Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.05.21254952

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, new vaccine strategies including lipid nanoparticle delivery of antigen encoding RNA have been deployed globally. The BioNTech/Pfizer mRNA vaccine BNT162b2 encoding SARS-CoV-2 spike protein shows 95% efficacy in preventing disease, but it is unclear how the antibody responses to vaccination differ from those generated by infection. Here we compare the magnitude and breadth of antibodies targeting SARS-CoV-2, SARS-CoV-2 variants of concern, and endemic coronaviruses, in vaccinees and infected patients. We find that vaccination differs from infection in the dominance of IgG over IgM and IgA responses, with IgG reaching levels similar to those of severely ill COVID-19 patients and shows decreased breadth of the antibody response targeting endemic coronaviruses. Viral variants of concern from B.1.1.7 to P.1 to B.1.351 form a remarkably consistent hierarchy of progressively decreasing antibody recognition by both vaccinees and infected patients exposed to Wuhan-Hu-1 antigens.


Subject(s)
Coronavirus Infections , Infections , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.27.20163147

ABSTRACT

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.08.939660

ABSTRACT

In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic datasets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic dataset can be readily queried using web-based tools, meta-searches through all such datasets are less accessible. In this brief communication, we demonstrate such a meta-meta-genomic approach, examining close matches to the Wuhan coronavirus 2019-nCoV in all high-throughput sequencing datasets in the NCBI Sequence Read Archive accessible with the keyword "virome". In addition to the homology to bat coronaviruses observed in descriptions of the 2019-nCoV sequence (F. Wu et al. 2020, Nature, doi.org/10.1038/s41586-020-2008-3; P. Zhou et al. 2020, Nature, doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in a metavirome dataset generated from the lungs of deceased Pangolins reported by Liu et al. (Viruses 11:11, 2019, http://doi.org/10.3390/v11110979). Our observations are relevant to discussions of the derivation of 2019-nCoV and illustrate the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences. ImportanceMeta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.

SELECTION OF CITATIONS
SEARCH DETAIL